Mapping the strategic objectives between new product development and product design

Yen Hsu

Department of Industrial Design and Graduate School of Design, Ming Chi University of Technology, Taipei, Taiwan, R.O.C. erickshi@ms1.hinet.net

Abstract: This study explores the strategic groups developed from the new product development strategies of various firms in the Taiwanese information industry. The product design strategies of the surveyed companies and the mappings between product design and new product development are discussed. Based on the questionnaire survey and interviews, in terms of new product development strategy for dealing with global competition, enterprises in the Taiwanese can be divided into four groups: namely prospector, analyzer, defender, and reactor groups. Companies in different strategic groups employ different product design strategic objectives and mappings exist between product design and new product development, particularly for features such as enterprise scale, business type, and product category. Furthermore, in terms of product design strategic objectives, companies in the prospector group tend to be aggressive innovators; those in the analyzer group exhibit innovation in applications engineering; those in the defender group are technologically innovative, and those in the reactor strategic group are progressive innovators. This investigation focused on generalizing the responsive strategies that Taiwanese information firms faced with the global market environment changes. For the product design strategy when an industry faces similar business environmental changes, this study can be a framework for similar research.

Key words: New product development strategy, product design strategy, strategic group

1. Introduction

Product design strategy is closely related to new product development strategy [7,16]. The best method of performing effective new product development is not merely a key factor to enterprise survival but also a vital trigger for maintaining firm competitive superiority [1,6]. A general consensus exists among enterprises that “design leads marketing and helps bring firms closer to consumers,” and that “enterprises sell not only products but also design” [13]. A good design not only benefits an enterprise, but also offers customers cognition regarding product operation and excellent values of the enterprise identity [14]. Rapid changes in the global market have exerted a significant impact on the information industry, the main industry in Taiwan. For managers in R&D departments and product designers of enterprises, attention should be paid to the actions of competitors, whether they are OEM-oriented or have their own brands. They must deal with the conflicts and challenges resulting from environmental change. Moreover, they have to implement new product design according to the goal set as part of the new product development strategy [7,22,25]. Researchers also claim that integrating product development in an enterprise can promote new product development performance [3,10,11,15,17-21].
On the other hand, numerous studies have shown that “design” can provide an important integral resource. “Design” is not only a key mechanism in the functional integration of product development but also a fundamental series loop in the total enterprise value chain [2,5,9,15,23]. Chang and Hsu [4] and Hsu [12] also demonstrated that Taiwanese enterprises have their own strategies and approaches in product design. However, there is limited literature on the integration of front end needs and real end execution of product design, namely the complementation of product development and product design strategy in practical activities, is limited. This study focuses on companies in the Taiwanese information industry with R&D, design and manufacturing abilities. Questionnaire survey and interviews are used to explore the mappings between new product development strategy and product design strategy. This study has three aims: (1) To explore the status of product development strategy execution in the Taiwanese information industry; (2) To analyze the concrete operational approaches in product development strategy and product design strategy in Taiwanese information industry companies; (3) To identify the strategic objectives of companies in different strategic groups in Taiwan’s information industry.

2. Methods

The product design and development strategy study is implemented in two stages: questionnaire survey and in-depth interview. During Stage 1, a questionnaire survey was employed to explore new product development strategies, including literature review, questionnaire design, selection of survey subjects, and questionnaire delivery, to analyze the situation of new product development strategy and the new product development strategic groups in the Taiwanese information industry. During Stage 2, subjects from questionnaire survey were chosen for the in-depth interview. The data regarding the execution of product design strategies of local firms in the information industry were then analyzed via content analysis. Finally, the relationships between new product development strategies and product design strategies were explored.

3. Mapping the strategic objectives between new product development and product design

Following conducting content analysis based on the interview results, 21 strategic objectives related to product design were identified: reducing production costs, ease of manufacturing and maintenance, upgrading product quality, in creasing product added value, reinforcing technical cooperation, reinforcing marketing information gathering and adaptation ability, reinforcing the division of labor in the same trade, developing new target markets, improving design and development procedures, designing a good human-machine interface, reinforcing promotion effectiveness, designing unique product functions, considering environmental design, increasing R&D investment, adding product variety, developing special product form features, upgrading firm product design image, improving product image and popularity, stressing social and cultural performances, considering special users, and emphasizing marketing research.

Companies in the Prospector strategic group have diverse design strategic objectives, indicating that these companies actively stress R&D and enterprise brands. Such firms thus maintain their market dominance. Owing to their strong brand image and popularity, such firms continuously adjust the marketing service system, actively develop new concept products, improve production flow, reinforce product price advantage, improve production automation efficiency, and actively develop new market segments. These companies are generally large scale and primarily involved in OB M. Moreover, such companies have comprehensive product development categories and diverse design strategies.
Companies in the Analyzer strategic group are competent in applying current technology to create low cost and high quality products with added value to promote their own corporate image, while simultaneously minimizing risk and maximizing benefits. The way companies in this strategic group adopt design strategy resembles that used by companies in the Prospector strategic group. These strategies include reducing production costs, achieving easy manufacturing and maintenance, upgrading product quality level, increasing product added value, reinforcing technical cooperation, reinforcing marketing information gathering and adaptation ability, reinforcing the division of labor in the same trade, developing new target markets, improving design and development procedures, developing new target markets, and upgrading firm product design images. Their business type tends to be ODM focused and covers numerous products.

Companies in the Defender strategic group exhibit a technical innovation tendency, stressing the improvement of product manufacturing flow and production techniques to produce and launch low cost and high quality products. Due to environmental restrictions, such companies rarely adjust their technologies, structure, or organizational operations. Instead, such firms emphasize the maintenance of current products and market. Consequently, such firms are mainly involved in pursuing stable growth and improved production efficiency. Companies in this strategic group stress technological innovation in product design, and share the following measures in common: reducing production costs, ease of manufacturing and maintenance, upgrading product quality level, increasing product added value, reinforcing technical cooperation, reinforcing marketing information gathering and adaptation ability, reinforcing the division of labor within the same trade, establishing new target markets, and improving design and development procedures. The scale of such firms ranges from medium to small and they are mainly involved in ODM. Therefore, these firms place considerable emphasis on manufacturing techniques and enhancing quality.

Finally, companies in the Reactor strategic group demonstrate a tendency of progressive innovation, adjusting their current product design and product mix in response to environmental and market pressures. In terms of design strategic objectives, companies in this group tend to adopt conservative or progressive innovation product development strategies, including reducing production costs, ease of manufacturing and maintenance, upgrading product quality level, increasing product added value, and reinforcing technical cooperation. They are small enterprises and mainly involved in OEM. The product categories of such companies thus are less diverse than those of firms in other strategic groups. Companies in this group are more conservative in design innovation but are mainly focused on reducing costs and improving their manufacturing ability.

This investigation focused on generalizing the responsive strategies that Taiwanese information firms faced with the global market environment changes. For the product design strategy when an industry faces similar business environmental changes, this study can be a framework for similar research.

4. References


